Nilaiperbandingan trigonometri yang bertanda positif berturut-turut dari kuadran I sampai kuadran IV, adalah sebagai berikut. ALL-SIN-TAN-COS (OH-CIN-TA-KU) Untuk cosecan, secan, dan cotangen, tandanya di setiap kuadran sama dengan tanda perbandingan trigonometri kebalikannya. Rumus Sudut BerelasiDalam pembahasan sebelumnya, kita telah melihat nilai perbandingan trigonometri untuk sudut sudut istimewa yang besarnya kurang dari 90o dinamakan sudut lancip. Selanjutnya akan dibahas nilai perbandingan trigonometri untuk sudut sudut istimewa yang besarnya lebih dari 90o. Yang dimaksud sudut istimewa yaitu sudut 0o dan sudut kelipatan 30o dan 45o . Dalam interval 0o ≤ x ≤ 360o sudut-sudut tersebut dikelompokkan atas empat kuadran, yaitu Kuadran I , yakni sudut-sudut yang besarnya antara 0o sampai 90o dinamakan sudut lancip Kuadran II , yakni sudut-sudut yang besarnya antara 90o sampai 180o dinamakan sudut tumpul Kuadran III , yakni sudut-sudut yang besarnya antara 180o sampai 270o Kuadran IV , yakni sudut-sudut yang besarnya antara 270o sampai 360o Nilai perbandingan trigonometri untuk sudut-sudut istimewa dapat dikelompokkan menjadi dua bagian, yakni - Dengan menggunakan aturan pelurus 180o – α, 180o + α dan 360o – α - dengan menggunakan aturan penyiku 90o + α , 270o – α dan 270o + α . Untuk nilai perbandingan trigonometri sudut-sudut istimewa dengan menggunakan aturan pelurus untuk sudut-sudut istimewa dalam interval 0o ≤ x ≤ 360o berlaku hubungan sin 180 – α = sin α sin 180 + α = –sin α sin 360 – α = –sin α cos 180 – α = –cos α cos 180 + α = –cos α cos 360 – α = cos α tan 180 – α = –tan α tan 180 + α = tan α tan 360 – α = –tan α Disamping itu, dengan menggunakan aturan penyiku terdapat pula hubungan antara nilai-nilai perbandingan trigonometri di berbagai kuadran untuk sudut-sudut istimewa dalam interval 0o ≤ x ≤ 360o berlaku hubungan sin 90 – α = cos α sin 90 + α = cos α cos 90 – α = sin α cos 90 + α = –sin α tan 90 – α = cot α tan 90 + α = –cot α sin 270 – α = –cos α sin 270 + α = –cos α cos 270 – α = –sin α cos 270 + α = sin α tan 270 – α = cot α tan 270 + α = –cot α Untuk lebih jelasnya akan diuraikan pada contoh soal berikut 01. Tentukanlah nilai dari a cos 150o b sin 225o c tan 240o Jawab 03. Tentukanlah nilai dari Aturan lain yang diambil dari sudut 360 – α adalah aturan sudut negatif. Dimana aturan yang dipakai adalah sebagai berikut sin 360 – α = –sin α cos 360 – α = cos α tan 360 – α = –tan α sin 0 – α = –sin α cos 0 – α = cos α tan 0 – α = –tan α sin –α = –sin α cos –α = cos α tan –α = –tan α Untuk menentukan nilai perbandingan trigonometri terhadap sudut-sudut yang besarnya lebih dari 360o maka digunakanlah aturan periodisitas trigonometri. Nilai sinus dan cosinus akan berulang setiap kelipatan 360o sedangkan nilai tangens akan berulang setiap 180o. ini berati sin 30o = sin 390o = sin 750o dan seterusnya. Sehingga dapat dirumuskan sin + α = sin α cos + α = cos α tan + α = tan α dimana k adalah bilangan bulat Namun dalam praktiknya aturan periodisitas di atas dapat disederhanakan dengan rumusan sin α – = sin α cos α – = cos α tan α – = tan α dimana k adalah bilangan asli dan α ≥ Untuk lebih jelasnya akan diuraikan pada contoh soal berikut 04. Tentukanlah nilai dari 05. Tentukanlah nilai dari a cos 930o b sin 1215o Jawab 06. Tentukanlah nilai dariDariuraian di atas maka nilai perbandingan trigonometri sudut-sudut istimewa adalah sebagai berikut : 30o 1 2 2 45o 1 3 2 60o 1 90o Sudut 0o 1 2 0 Perbandingan Trigonometri 0 1 2 Sinus (sin) 1 2 2 1 terdefinisi Tidak 1 3 2 Kosinus (cos) 1 3 3 3 0 1 Tangen (tan) Diketahui segitiga siku-siku ABC, dengan panjang sisi a = 4 cm dan ∠A = 60o Perbandingan Trigonometri – Trigonometri adalah cabang ilmu matematika yang mempelajari tentang sudut, sisi, dan perbandingan antara sudut pada sisi. Dasarnya memakai bangun datar segitiga. Untuk lebih memahami perbandingan trigonometri, Simak pembahasan dibawah AC merupakan sisi miring segitigaSisi BC merupakan sisi depan sudutSisi AB merupakan sisi samping sudut αDi sini kita akan mengenal istilah matematika baru, yaitu sinus sin, cosinus cos, tangent tan, cosecan csc, secan sec dan cotangent cot. Sinus merupakan kebalikan dari cosecancosinus kebalikan dari secantangent kebalikan dari cotangentSinus, Cosinus dan Tangent digunakan untuk menghitung sudut dengan perbandingan trigonometri sisi di gambar segitiga diatas, nilai Sinus, Cosinus dan Tangent diperoleh dengan cara sebagai berikutDaftar IsiSudut IstimewaDalam Kuadran Kuadran IKuadran IIKuadran IIIKuadran IVTabel TrigonometriIdentitas TrigonometriPerbandingan Trigonometri Untuk Sudut KhususContoh Soal TrigonometriPelajari Lebih LanjutSudut IstimewaBerikut ini nilai sin, cos, dan tan untuk sudut istimewa0o30o45o60o90oSin0½½√2½√31Cos1½√3½√2½0Tan0⅓√31√3–Dalam Kuadran Sudut dalam suatu lingkaran, memiliki rentang 0° – 360°, sudut tersebut dibagi menjadi 4 kuadran, dengan masing-masing kuadran memiliki rentang sebesar 90°.Kuadran IMemiliki rentang sudut dari 0° – 90° dengan nilai sinus, cosinus dan tangent IIMemiliki rentang sudut dari 90° – 180° dengan nilai cosinus dan tangen negatif, sinus IIIMemiliki rentang sudut dari 180° – 270° dengan nilai sinus dan cosinus negatif, tangen IVMemiliki rentang sudut dari 270° – 360° dengan nilai sinus dan tangent negatif, cosinus positif. Perhatikan tabel trigonometri di bawah iniKuadran IKuadran IIKuadran IIIKuadran IVSin αCos 90 – αSin 180 – α–Sin 180 + α–Sin 360 – αCos αSin 90 – α–Cos 180 – α–Cos 180 + αCos 360 – αTan αCotan 90 – α–Tan 180 – αTan 180 + α–Tan 360 – αCosec αSec 90 – αCosec 180 – α–Cosec 180 + α–Cosec 360 – αSec αCosec 90 – α–Sec 180 – α–Sec 180 + αSec 360 – αCotan αCotan 90 – α–Cotan 180 – αCotan 180 + α–Cotan 360 – αIdentitas TrigonometriDalam segitiga siku-siku, selalu berlaku prinsip phytagoras, yaitu a2+b2 = c2. Prinsip phytagoras tersebut menjadi asal pembuktian identitas = c2bagi kedua ruas dengan c2, diperoleh persamaan baruSederhanakan dengan sifat eksponensial menjadiSubtitusi bagian yang sesuai dengan perbandingan trigonometri pada segitiga, sehingga diperolehsin α2 + cos α2 = 1atau bisa ditulis menjadi sin2 α + cos2 α = 1Dari identitas yang pertama, dapat diperoleh bentuk lainnya, yaitu1. Bagi kedua ruas dengan cos2 α, diperolehsin2 α/cos2 α + 1 = 1/cos2 αKarenasin2 α/cos2 α = tan2 α dan 1/cos2 α = sec2 α maka diperolehtan2 α + 1 = sec2 α2. Bagi kedua ruas dengan sin2 α, diperoleh1 + cos2 α/sin2 α = 1/sin2 αKarenacos2 α/sin2 α = cot2 α dan 1/sin2 α = csc2 α maka diperoleh1 + cot2 α = csc2 αPerbandingan Trigonometri Untuk Sudut Khusus Berdasarkan gambar diatas bisa ditentukan nilai perbandingan trigonometri sudut-sudut khusus itu dalam tabel sebagai berikut.*td tak terdefinisiContoh Soal TrigonometriContoh Soal 1Tentukanlah nilai dari sin 120°+cos 201°+cos 315°!Jawabsin 120° ada di kuadran II, hingga nilainya tetap positif dengan besar sama seperti sin 60°sin 120° = sin 180-60° = sin 60° = 1/2 √3cos 120° ada di kuadran III, hingga nilainya negatif dengan besar sama seperti cos 30°cos 120° = cos 180+30° = – cos 30° = -1/2 √3cos 315° ada di kuadran IV, hingga nilainya positif dengan besar sama seperti cos 45°cos 315° = cos 360-45° = cos 45° = 1/2 √2Contoh Soal 2Diketahui segitiga siku-siku ABC, siku-siku di C, panjang a = 4 dan b = panjang sisi dan nilai perbandingan trigonometri sudut αJawabPelajari Lebih LanjutTurunan Fungsi TrigonometriRumus Sin Cos TanVektorLimit FungsiContoh Soal Trigonometri dan Pembahasannya
Untuklebih memahaminya lagi mari kita mulai berlatih dengan soal-soal yang sudah disediakan di buku matematika kalian masing-masing. 1 nyatakan sudut sudut berikut dalam satuan derajad. 45 1 2 2 60. Dalam postingan ini saya bagikan soal sejarah indonesia kelas 10 11 12 beserta kunci jawaban atau pembahasannya. TRIGONOMETRI KELAS X SMASMK
PembahasanPerbandingan trigonometri sudut berelasi merupakan perluasan dari definisi dasar trigonometri tentang kesebangunan pada segitiga siku-siku yang hanya memenuhi untuk sudut kuadran I atau sudut lancip . Perhatikan bahwa Akibatnya cos 0 ∘ = = cos 2 ⋅ 36 0 ∘ + 350 cos 35 0 ∘ Sudut berada di kuadran IV yaitu 27 0 ∘ ≤ x ≤ 36 0 ∘ ,sehingga . Dengan demikian, diperoleh Jadi, senilai dengan di kuadran trigonometri sudut berelasi merupakan perluasan dari definisi dasar trigonometri tentang kesebangunan pada segitiga siku-siku yang hanya memenuhi untuk sudut kuadran I atau sudut lancip . Perhatikan bahwa Akibatnya Sudut berada di kuadran IV yaitu , sehingga . Dengan demikian, diperoleh Jadi, senilai dengan di kuadran I.Latihan2.A.5 1. Jika tan 7 p , nyatakan tan142 dalam p . 2. Tentukan nilai untuk perbandingan trigonometri tan 340 tan 25 . 2 tan 25 tan 340 2 LC~2017/2018~XI IPA~Matematika Peminatan~Bab 2 Halaman 12 Rumus-Rumus Trigonometri Latihan 2.A.6 1 1 3 dengan A sudut di dan sin B 4 3 kuadran III dan B di kuadran II.PembahasanPerbandingan trigonometri sudut berelasi merupakan perluasan dari definisi dasar trigonometri tentang kesebangunan pada segitiga siku-siku yang hanya memenuhi untuk sudut kuadran I atau sudut lancip . Sudut berada di kuadran IIyaitu ,sehingga . Jadi, ditunjukkan bahwa pada kuadran I bernilai .Perbandingan trigonometri sudut berelasi merupakan perluasan dari definisi dasar trigonometri tentang kesebangunan pada segitiga siku-siku yang hanya memenuhi untuk sudut kuadran I atau sudut lancip . Sudut berada di kuadran II yaitu , sehingga . Jadi, ditunjukkan bahwa pada kuadran I bernilai .KOMPETENSIINTI KOMPETENSI DASAR INDIKATOR MATERI Bab 6 Persamaan dan Identitas Trigonometri EVALUASI TUGAS
PembahasanPerbandingan trigonometri sudut berelasi merupakan perluasan dari definisi dasar trigonometri tentang kesebangunan pada segitiga siku-siku yang hanya memenuhi untuk sudut kuadran I atau sudut lancip . Sudut berada di kuadran IV yaitu ,sehingga . Jadi, ditunjukkan bahwa pada kuadran I bernilai .Perbandingan trigonometri sudut berelasi merupakan perluasan dari definisi dasar trigonometri tentang kesebangunan pada segitiga siku-siku yang hanya memenuhi untuk sudut kuadran I atau sudut lancip . Sudut berada di kuadran IV yaitu , sehingga . Jadi, ditunjukkan bahwa pada kuadran I bernilai .
SudutBerelasi di Kuadran II. Untuk α = sudut lancip, maka (90° + α) dan (180° − α) merupakan sudut-sudut kuadran II. maka (270° + α) dan (360° − α) merupakan sudut kuadran IV. Dalam trigonometri, relasi sudut-sudut dinyatakan sebagai berikut : sin (270° + α) = -cos α Nyatakan tiap perbandingan trigonometri berikut di April 28, 2023 Post a Comment Nyatakan dalam perbandingan trigonometri sudut di kuadran I!a. cos 140°b. sin 250°c. tan 320°d. cosec 825°Jawaba. cos 140° = cos 180° - 40° = -cos 40°b. sin 250° = sin 180° + 70° = -sin 70°c. tan 320° = tan 360° - 40° = -tan 40°d. cosec 825° = cosec 720 + 105° = cosec 105° = cosec 180° - 75° = cosec 75°-Jangan lupa komentar & sarannyaEmail nanangnurulhidayat terus OK! 😁 Post a Comment for "Nyatakan dalam perbandingan trigonometri sudut di kuadran I! a. cos 140° b. sin 250° c. tan 320° d. cosec 825°"
Hubungansatuan derajat dengan satuan radian, bahwa 1 putaran penuh sama dengan 2π rad. Seperti dinyatakan dalam definisi berikut: 360 derajat = 2 phi rad atau 1 derajat = ≠ / 180 rad atau 1 rad = 57,3 derajat. Dalam kajian trigonometri terdapat istilah sudut istimewa. Arti dari sudut istimewa ini adalah sudut-sudut yang nilai perbandingan
Nyatakan dalam perbandingan trigonometri sudut di kuadran I!a. sin 340°b. cos tan 275°d. sec 115°Jawab-Jangan lupa komentar & sarannyaEmail nanangnurulhidayat terus OK! 😊gIVRPO.